Comments on nonlinear viscosity and Grad’s moment method
نویسندگان
چکیده
منابع مشابه
Entropy viscosity method for nonlinear conservation laws
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entr...
متن کاملSpectral Vanishing Viscosity Method for Nonlinear
We propose a new spectral viscosity (SV) scheme for the accurate solution of nonlinear conservation laws. It is proved that the SV solution converges to the unique entropy solution under appropriate reasonable conditions. The proposed SV scheme is implemented directly on high modes of the computed solution. This should be compared with the original nonperiodic SV scheme introduced by Maday, Oul...
متن کاملGlobal slab deformation and centroid moment tensor constraints on viscosity
[1] We analyze moment tensor solutions from deep subduction zone earthquakes to determine global slab deformation patterns. Inferred strain rates are compared to predicted deformation patterns from fluid models to help constrain the first‐order radial and lateral viscosity structure of the Earth. While all slabs that reach the lower mantle are compressed at their tip, intermediate depth pattern...
متن کاملVanishing Moment Method and Moment Solutions for Fully Nonlinear Second Order Partial Differential Equations
This paper concerns with numerical approximations of solutions of fully nonlinear second order partial differential equations (PDEs). A new notion of weak solutions, called moment solutions, is introduced for fully nonlinear second order PDEs. Unlike viscosity solutions, moment solutions are defined by a constructive method, called the vanishing moment method, and hence, they can be readily com...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2003
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.67.053201